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*Corresponding Author ABSTRACT:Metal (Mn, Cu, Co) doped and undoped Nano ZnO, prepared by chemical
sivasamy@cilri.res.in precipitation method and calcined at 300C was characterized by XRD, F&EM, FHIR,

(A. Sivasamy DRS and TEM. These photo catalysts can be effectively degrade organic contaminants
Tel 401 using visible light irradiation. Doping reduces the intra granular resistance and

recombination of the photo generated electroghole pairs. The photo activity of

Received - 30-01-2018 undoped and doped ZnO powders was evaluated by monitoring the photo

Accepted : 13-02-2018 decolourization of the aqueous solutions oAcidal NavyBlue 3BR(ANB 3BR) dye under
visible irradiation. The disappearance of dye molecules followegseudofirst-order
kinetics. The effect of various parameters namely, pH of the medium, catalyst loading,
initial dye concentration and kinetics of photo degradation of ANB 3BR was
investigated. The rate ofdegradation was found to be strongly influenced by all above
mentioned parameters. The reduction in the chemical oxygen demand (COD) of the
decolorized aqueous samples revealed a possibility of completgestruction of the
organic molecules along with colour removal. Experimental data were analyzed by
model equations such as Langmuir and Freundlich isotherms and it was found that the
Langmuir isotherm model best fitted the adsorption dataThe results showed that the
doped (Mn, Cu, Co) percentage (0.25, 0.5, 0.75, 1, 1.5%) were successfully doped into
the ZnO and that manganese and coppeioping reduced the photo catalytic activity of
Zn0O, Co doped ZnO increase the photo catalytic activity.1%, 0.75%, 0.76EMn, Cu, Co
doped in ZnO can be used in photo catalytic experiments
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1 Introduction

Photo catalytic degradation of organic compoundsgap, which may act as electrofmole recombination sites
for the purpose of purifying dye Wastewater from [8]. The application of semiconductors such as ZnO and
industries and households has attracted much attention inTiOz in the area of photo catalysis has grown considerably,
recent years[1-5]. The industrial importance of ZnO as aprimarily because oftheir physical and chemical stability,
UV blocking agentexperiments involving the reduction of high oxidative capacity, low cost and ease of availability
the photo catalysis of ZnO have scarcely been report¢d]. [9-13]. ZnO has emerged to be more efficient catalyst as
One approach to eliminate the photo catalytic activity is tofar as water detoxification is concerned because it
dope ZnO with impuity ions. It is generally considered generates HO: more efficiently, it has high reation and
that doping ions create defects in the crystal lattice that actmineralization rates [14, 15]. Also it has more numbers of
as trapping sites of the excitants, promoting active sites with high surface reactivity[16]. ZnO has been

recombination of electrorrhole pairs, resulting in reduced demonstrated as an improved photo catalyst as compared
photo catalytic activity [7]. For example, the dojng of to commercialized TiQ based on the larger initial rates of
manganese ions in ZnO creates deep traps within the bandctivities and its absorption efficacy of solar radiations
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[17]. However, ZnO has almost the same band gap (3.2 e¥nO, which is the easiest method for producing nano

as TiQ. Surface area and surface defects play an important AOAOEATI 60 AT A Al Ol AAOOEAA

role in the photo catalytic activities of metal oxide. Theexperiments. The preliminary results presented in this
reason is that, doping of metaloxide with metal and/or work show much promise and suggest the need to further
transition metals increases the surface defect§18]. In explore heterogeneous photo catalysis

addition it affects the optical and electronic properties and ]

can presumably shift the optical absorption towards the 2. Expe”mental

visible region [19]. This can subsequently activate these?-1 Materials and methods

modified metal oxide photo catalysts upon visible light Acidal Navy Blue 3BR (ANB 3BR) C.I. 20470 from
irradiation. Doping of ZnO with cobalt (Co) has beenS d Finechem. Ltd. The starting materials,
reported to cause hyper chromic shift in the optical ZN(CHCOOYE ¢20 (s d Finechem. Ltd, >99.5%), N2CQ
absorption of ZnO, which is attributable to the shrinkage (Sisco  Research  Laboratories  Pvt.  Ltd, >99.9%),
of the band gap[20]. These changein ZnO caused by CoMN(CHCOO}E 120 (Qualigens fine chemicals, >99%),
ion were assumed to play an important role in the photo &@HsCuQ.HO (s d Finechem. Ltd, >98%), @HsC0Q.4H0
catalysis. As reported ZnGs better solar photo catalyst (S d Finechem. Ltd, >99.5%), NaOH (Sisco Research
than TiO» and other metal oxide on the basis of solarLaboratories Pvt. Ltd, >98%) and HCI (Ranbaxy Fine
radiation absorption. In addition enhancement in the Chemicals Ltd) were used as such. The chemical structure

optical absorption owing to increase in surface defects by©f the AB 10B are shown in Fig. 1
doping with Pb ion and Ag ion urge us to further Na* “03S S0O;~ Na*
investigate undoped and doped ZnO nano patrticles and its “

photo catalytic activities[18, 19]. Numerous studies report NQ‘“N N/’N

an improvement of visible-light photo catalytic activity of @/ OH NH, \@\
metal oxide semiconductors by doping with cations, NO
anions, metals,and nonmetals [21-25]. There are also Figure 1. Chemical structure of ANB 3BR.

some reports of the detrimental effect of dopants in the

photo catalytic activity [26]. One of the strategies adopted2_2 Catalyst preparation
for tuning the band gap is to employ suitable dopants by

2

Initially, the synthesis of zinc carbonate was
which the electronic structure of ZnO can be altered. Theattempted via the reaction Zn(CHCOO)*2H20 + NaCGQ O
doping ions such as Al, Co, Ag, Pb and Mn hawecq + 2Na(CHCOO). In a typical synthesis of undoped

incorporated in ZnO and their effect has already beenZno 135 g of Zn (CECOO)E c-0 and 6.5g of N&CQ
studied and reported [27-29]. The doping increase the ere separately dissolved in 50 ml of deionised water.
bulk surface area and surface defects which generate MOrRext the NaCQ solution was added into the Zn

active sites for the reaction at an energy level lower tha”(CI—bCOO)E ¢ 20 solution to form white precipitates. The
the conduction band of pure ZnO and thus absorbs ViSibl‘?Jrecipitates were separated from the supernatanusing a

light via these defect sites causing enhancement in they iion and further washed with deionised water to
optical absorption of ZnOZnO is a good photo catalyst to

degrade organic matter in water[30, 31, 32] There are

remove reaction byproducts until the salinity of the

supernatant becomes less than 100 ppm. The separated

several methods for preparing nano sized ZnO poWdersprecipitates were dried in air at 6(°C and then heat treated
such as spray pyrolysis precipitation, thermal

decomposition, hydrothermal synthesis an

at 300°C for 1 hour. For the synthesis of manganese,
d copper, cobaltdoped ZnO, a solid mixture of 0.25, 0.5,
electrochemical growth [33-37]. Different methods yield 0.75, 1 and 1.5 mol% Mn (CYCOO)E T 20, GHsCUQ.HO

different particle sizes of ZnO, dependingn the type of CHsCOQ.4H:0 in ZN(CHCOO)E ¢ 20 was dissolved in 50
precursor, the solvent, the pH and the temperature of the of deionised water and then mixed with an queous
reacting solution. In this study, we employed a

precipitation method to prepare metal doped Nano sized
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solution of N&CQ, followed by the same procedure as forproperties of doped and undoped ZnO using respective

undoped ZnO. target compounds as adsorbate. The adsorption process
of dissolved ANB 3BR dye onto doped and undoped ZnO
2.3 Analytical methods nano particles was investigated in detail.
IR spectra were recorded using Perkin Elmer 6X Adsorption equilibrium experiments were carried

FT-IR spectrophotometer using KBr pellets. Diffuse out with the required amount of catalyst dosage (0.05g/10
reflectance spectra were recorded using Shimadzu UVmI) and the concentrations of the ANB 3BR varied from 1
2450. Powder Xray diffraction patterns of ZnO catalyst to 200 ppm. The systems were equilibrated for 24 h at 27
was obtained wusing X' per PRO diffractometer°C. There are quite a few commuo isotherms used for
Transmission electron microscope (TEM) images werecorrelating adsorption equilibrium data [39]. Equilibrium
recorded using a Philips model (€cnai 10) transmission adsorption data collected in this study could be fitted by
electron microscope. UV spectral measurements wereéboth Langmuir and Freundlich isotherms. The common
done using Shimadzu UV 2101PC spectrometer. The pfdrms of these adsorption isotherm equations (1&2),
values were measured via DigisupH meter (Model 2001). respectively, ae:
The morphology of catalyst was examined using a - 1)
HITACHISU6600 field emissbn scanning electron
microscope (FESEM). Chemical oxygen demand (CODﬂ + # (2
was measured with a Merck CODSpectroquant TR 320 Where, gq (mg/g) and Ceq (mg/L) are the amount of
model. adsorbed dye per unit weight of catalyst and unadsorbed
dye concentration in solution at equilibrium, respectively.
2.4 Irradiation procedure The constant K (L/g) is the Langmuir equilibrium
All experiments were carried out under identical constant and the K/gm gives the theoretical monolayer
conditions using Heber visible annular type photaeactor saturation capacity, g. Kr (L/g) is the Freundlich constant
model HVAR. The irradiation was carried out usingand n (g/L) is the Freundlich exponent. The adsorption
Tungsten (500w) lamp. Dark reaction also carried out for equilibrium data were analyzed by Langmuir and
the purpose of comparison. The catalyst was added to afreundlich isotherm model equations. The constants of
aqgueous dye solution and reaction mixture waslLangmuir and Freundlich isotherms were also evaluated
continuously stirred by magnetic stirrer and for the and tabulated in Table 1. The adsorption isotherm results
complete mixing of the reaction solution. At specific time from Figure 2 indicated that Langmuirisotherm fitted the
intervals, 4z5 mL of the sample was withdrawn and data well (r2> 0.95).
centrifuged to separate the catalyst. One millilitre of the . 5
OAiI PI1 A xAO OOEOAAI U AEI OOAA |AlLA EOOy AA .
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color of the ANB 3BR solution and it is used to monitor the ?
decolorisation of dye. The absorbance at 322 nm =
represents the aromatic content of ANB 3BR and the §
decrease of absorbance at 322 nm indicates the
degradation of aromatic part of dye.

B 7n0
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2.5 Adsorption isotherm of the dye molecules

onto ZnO 00 05 10 15 20 0 2 4 8
I.w"Ceq {L/mg) log Ceq (mglL)

The photo degradation of organics using
semiconductor photo catalyst mainly occurs on the surface
of catalyst [38]. It is important to study the adsorptive Figure 2. a) Langmuir andb) Fruendlich isotherm of
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undoped and Mn, Cu, Co doped ZnO (catalyst dosage = 0.0&no particles. It seems that Co, Cu, Mn ions form complex

g/10 mL; pH = 7; T = 27C; t=24h; agitation = 100 rpm). with the ZnO surface oxygen, hence; suppress tlyggowth
The value of R, the separation factor fell in the of ZnO crystallite.

range of @z1 which clearly showed that the adsorption The diffuse reflectance spectra of ZnO an@.25,

process is favourable. The value of n in Freundlict0.5, 0.75, 1, 1.5% ofCu, Co and Mn doped ZnO nano

isotherm also varied from 1 to 10 which again proved that crystals catalysts are displayed irFig. 6,respectively.

the adsorption is favourable.

Table 1 The constants ofLangmuir and Freundlich isotherms of ANB 3BR by visible light

Isotherms ZnO MINO GZnO -ZmO

Langmuir

gm(mg/g) 1.7412 0.5640 0.5927 1.047

K 0.0939 0.1893 0.1322 0.056

R 0.9141- 0.0505 0.8408-0.0257 0.8832-0.0364 0.9470.082

r2 0.9534 0.9607 0.9658 0.9547

Fruendlich

Kr (L/g) 0.1353 0.083 0.0678 0.0809

N 1.3875 1.7319 1.2918 1.4009

r2 0.9132 0.8349 0.9768 0.9791
3. Results and Discussions ZnO nanocrystals exhibited absorption in the UV
3.1. Catalyst characterization range (2007400 nm). The band-gap energy Eng Of the

FE-SEM micrograph of the calcites (300 °C) Mnphoto catalyst is given by equation (3),

Cu, Co doped ZnO and undoped ZnO nano particles is O —Qw (3)

shown in Fig.3 (A, B, C and D)This image shows global7 EAOAR 1 EO OEA médsAFrdm @OE E
and uniform particles which are coherent together. In Fig.above equation the banegab energy &y (2.95-3.35eV) of
4 (A, B, C) shows the EDX data of Mn/TiQhree peaks Cu doped ZnO, (2.78.44eV) of Co doped ZnO, (2.81
around 0.5, 1 and 5.9 keV, Co/ZnO shows seven peakspoeV) of Mn doped ZnO and 3.49 eV of undoped ZnO,
around 0.5, 0.7, 1, 6.9, 7.7, 8.7 and 9.6 keV and Cu/Znfspectively.ZnO nano crystal has slightly higher band gap
shows six peaks around 0.5, 1, 8, 8.7, 8.9 and 9.6 keMan doped zZnO.
respectively. The intense peak is assigned to the bulk ZnO The XRD pattern ofCo, Cu, Mn doped ZnOand
and the less intense peaks to the surface ZnO. The peaks @idoped ZnO nano crystals are giveim Fig. 7, 8, 9 and 10.
Mn (0.5, and 5.9 keV), Co (0.7, 6.9 and 7.7 keV), Cu (1A the marked diffraction peaks of ZnO inFig. 10 can
and 8.9 keV) are distinct in Fig4 (A, B, C). The less intenseoincidently be indexed by the known hexagonal standard
peak is assigned to Mn, Co, Cu in the ZnO lattices. TheggO. The crystallographic phase of thesen® nano crystals
results confirmed the existence of Mn, Cu, and Co atoms iBelongs to the wurtzite-type ZnO. Characteristic peaks of
the solid catalysts but the XRD patterns do not show anynO at 32.24, 34.91, 36.73 and 57.06, correspond to (1 0
peaks related to Mn, Cu, Co (even for 1.5% Mn, Qo (), (0 0 2), (1 0 1) and (1 1 0) diffraction peaks of wurtzite
doped ZnO catalyst). Therefore, it may be concluded thagnQ, indicating that the ZnO shell possesses a hexagonal
Mn, Cu and Co ions are uniformly dispersed among therystal structure. The relatively high intensity of the (1 0
ZnO crystallites. 1) peak is indicative of anisotropic growth and implies a
Figure 5 (A and B, C, D) shows TEM image @freferred orientation of the crystallites. No significant
samples from which the particle sizes of undoped and Cagifference could be observed between the XRD patterns of
Cu, Mn- doped ZnO and \ere found to be around 515 and the doped and undoped ZnOThe average particle sizes of
20-50 nm, respectively. Hence, it can be concluded that thé&T AT PAA AT A Al PAA Pl xAAOO AAI
addition of Co, Cu, Mn to Zinc hinders the growth of ZnO
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Figure 3. FESEM images ofA) Mn doped ZnOB) Cu doped ZnQr) Co doped ZnO an®) ZnO calcite at 30€C for 1h.
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Figure 4. EDX images of) Mn doped ZnOB) Co doped ZnO anf) Cu doped ZnO.
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Figure 5. TEM images of\) ZnOB) Co doped ZnQC) Cu doped ZnO an@®) Mn doped ZnO calcite at 30€ for 1h.
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Figure 6. The diffuse reflectance spectra (DRS) of undoped and Mn, Cu, Co doped ZnO
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Figure 7. X-ray diffraction pattern of Co doped ZnOFigure 8. Xray diffraction pattern of Cu doped ZnO.
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Figure 9. X-ray diffraction pattern of Mn doped ZnQrigure 10. Xray diffraction pattern of ZnO.
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Figure 11. FT-IR spectra of A) ZnO B) Mn doped ZnOC) Cu doped ZnO and)) Co dopedZnO and after visible
irradiation.

lable 2 Particle sizes tor undoped and Mn, Cu, Co dopedrig. 11(a, b, c, dpive the FFIR spectra of undoped and
Zn0 doped ZnO nano crystals.Figure 1la indicated the

- - - resence of absorption bands at 438 crhconfirming the
Catalyst Doping level (mole %) Particle sizes (nm) P Pl "9

7nO 0 8-10 presence of ZrO (metatoxide) bond. Fig. 11(a, b, c, d)
0.25 8-13 shows the absorption band at2350 cm? confirming the

0.5 8-9 absorption of atmospheric C® on the metallic cations

Mn-ZnO 2'75 258 [40, 41]. As reported earlier the band in the region of
15 8-217 6807400 cm! is characteristic of ZnOnano crystals[42].

0.25 5-29 Figure 11b showsthe presence of absorption bands at

0.5 >-14 1629 cm? confirming the oxide from ZnO bond. The

Cuzno 2'75 (1551110 peak at 1454 - 1400cm? indicates symmetric stretching
15 32-72 vibration of coo. 454 cm! and 644 cm! indicates bending

0.25 2-14 and stretching vibration of MnO. Absorption bands

CoZno 8?5 25132 observed at 2925 cmt and 3400cm? represent GH and
1 6-15 O-H respectively. Fig. 11 (a, b, c, d)indicates the

1.5 6-55 absorption peaks at 14061600cm® correspond to C=0

stretching mode.
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3.2. Catalytic activity catalyst. The increase in dye concentration also decreases
pH is an important parameter in photo catalytic the path length of photon entering into the dye solution. At
degradation. The effect of pH on the photo degradation ohigh dye concentration the dyemolecules may absorb a
ANB 3BRwas studied in the pH range ol.5z11.5. After 6h significant amount of visible light rather than the catalyst
of irradiation 99.8, 99.8, 98.2 and 97.6% afegradationfor and this may also reduce the catalytic efficiencj49].
ZnO, Mn, Cu, Co dopednO nano crystals at neutral pH
(Fig. 12). The maximum efficiency was observed at neutral3.3.  Kinetics of visible Photo catalytic
pH of 7. In acidic pH range (183.5) the removal efficiency Decolourisation of AB 10B
is less and it may be due to the dissolution of Zn(23]. The kinetics of photo decolourisation of various
ZnO nano crystals can react with acids to prodie the concentrations of ANB 3BR in visible irradiation is
corresponding salt at acidic pH. The adsorption of dye atdemonstrated in figures (1518). From the figure it could
different pH in dark was measured. The percentages obe inferred that the photo degradation experiments of
adsorption at pH 7 were 20.4, 24.9, 20.69 and 17.5 for ZnOGANB 3BRby visible light employing ZnOMn, Cu, Co doped
Mn, Cu, Co doped ZnO, respectively. Adsorption of dy2nO nano crystalsas the photo catalyst exhibited pseudo
molecule is maximum atpH 7 and it decreases at pH 9.5first-order kinetics with respect to the concentration of the
and 11.5. Hence the degradation is also efficient at pH 7. Hye. The kinetics of photo decolourization of ANB 3BR
is highly advantageous to have the maximum efficiency atould berepresented by thefollowing equations.

neutral pH 7 since there is no need of prreatment of the -d[ANB 3BRdt = kons[ANB 3BR (4)

effluent. [ANB 3BR = [ANB 3BRo at t=0 could be deduced from
Fig 13 the influence of the photo atalyst dosage Equation (4) upon integration and hence

on the degradation of ANB 3BRhas been investigated IN[ANB 3BRo/[ ANB 3BR =Kkobst (5)

employing different amounts of ZnO, Mn, Cu, Co dopeWherein, kobs are the pseudaofirst-order rate constant.
ZnO nano crystals. The increase of catalyst dosage from Rigure 19 is the plot of In(JANB 3BRo/[ ANB 3BR) or
to 5 g L! increases the percentage degradation In(Co/C) Vs irradiation time for different initial
appreciably. Further increase of catalyst dosage above 5 goncentrations of ANB 3BR The values ofkons calculated
L1, decreases the percentage degradatiokhlence 5g L1 of employing least square regression analysis andalff life t¥2
ZnQO, Mn, Cu, Co doped Zn@atalyst concentration was (minutes) i.e., t2 = 0.693/k for all the above experiments
used in the reusability experiments. The decreaseat is given Table 3. The rate of photdegradationfollowed
higher concentration may be de to aggregation of catalyst pseudo-first-order kinetics in which the value of the
and its screeningeffect[44, 45]. kinetic constant decreased with increase in the
The effect of pollutant concentration is a very concentration of the initial reactant. This could be due to
important parameter in wastewater treatment. The effect the decrease in the number of active sites on the catalyst
of initial ANB 3BRconcentration was investigated over the surface due to the adsorption of the dye molecules. The
concentration range of 5 to100 ppm. The experimental rate constant (kobs) was calculated from the slopes of the
results are presented inFig. 14. The results show that theplots (see Table 3) to study the nature of the
increase in the dye concentration decreases thephotochemical reaction ofANB 3BRwith ZnO and Mn, Cu,
degradation and from the Fig. 14 it is clear that the Co doped ZnO nano crystals
degradation decreases with increase in the initial
concentration of ANB 3BR Similar results have been3.4. UMVIS absorption spectrum
reported for the photo catalytic oxidation of other dyes Figure 20 shows the UWIS absorption spectrum
[46748]. The initial concentration dependence on the of undoped and doped ZnO recorded for 10 pprANB 3BR
photo degradation of ANB 3BR may be due to the solution visible irradiated for different durations. The
following reasons. When the dye concentration increasesnaximum absorbance values recorded during the photo
the amaunt of dye adsorbed on the catalytic surfacedecolourization and degradation process showed a
increases. This affects the catalytic activity of the photodecrease with increase in irradiation time.
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ZnO as the photo catalyst. [Dye] = 10 ppm; Mass of catalyst = 5 g/L; Duration of visible irradiation = 6 hrs.
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Figure 13. Effect of catalystloading on the dark and visible photo catalytic decolourization oANB 3BRusing undoped
and doped ZnO as the photo catalygDye]= 10 ppm; pH=7; Duration of solar irradiation = 6 hrs.
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undoped and doped ZnO as the photo catalyst. pH=7; Mass of catalyst= 5 g/L; Duration of visible irradiation = 6 hrs.

100 1 I 1 1 I 1 100 1 I 1 I 1 1
%HH‘% N S R S S ﬁ{—H—E‘I S
80 80
Co doped ZnO, 25 ppm
60 —&- visible light irradiation 60 Co doped ZnO, 50 ppm
—O- dark reaction —&- visible light irradiation
—O—dark reaction
40 20
204 ——o—10 20
S o _—a
'E P — e
g 0 "“’Q‘@’@\ T T T T T T 0 Q'Q—@rg/e\ T T T T T 1
E 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 40(
[}
8]
S ol A ——— e
s ﬁ’} ﬁEII =111 T T 1
80+ 80
Co doped ZnO, 10 ppm
- visible light irradiation Co doped ZnO, 75 ppm
€0 —O- dark reaction 604 —&- visible light irradiation
-O—dark reaction
40+ 40
20 —a—0 20
@/@/G’G/O/O @’e/c’/o-/o
&~
. e
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 40
Time (min)

Figure 15. Kinetics of dark and visible photo decolourisation of dye using Co doped ZnO as the photo catalyst. [Dye]=
10 ppm, 25ppm, 50ppm, 75 ppm; pH=7; Mass of catalyst = 5 g/L.
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Figure 16. Kinetics of dark and visible photo decolourisation of dye using Cu doped ZnO as the photo catalyst. [Dye]=
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Figure 17. Kinetics ofdark and visible photo decolourisation of dye using Mn doped ZnO as the photo catalyst. [Dye]=
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Figure 18. Kinetics of dark and visible photo decolourisation of dye using ZnO as the photo catalyst. [Dye]= 10 ppm, 25
ppm, 50ppm,75ppm; pH=6.8; Mass of catalyst =5 g/L.
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Figure 19. Pseudo first order kinetic plot of visible photo doped ZnO for different initial dye concentrations. Mass of
decolorisation of ANB 3BR byundoped and Mn, Cu, Cocatalyst = 5g/L.
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Table 3 Pseudo first order rate constants & half life oANB 3BRdecolourisation by Visible light

Dye Rate constants, k (mirt) Halfulifémtin-1)
concentration, 7,5 MrznO C&znO Ce&znO  ZnO MENO CeZnO CeZnO

[ppm]

10 0.2449 0.0411 0.0605 0.0639 2.8 16.86 11.45 10.84
25 0.1000 0.0235 0.0474 0.0410 6.93 29.48 14.62 16.90
50 0.0723 0.0099 0.0408 0.0292 9.58 70 16.98 23.73
75 0.0609 0.0054 0.0383 0.0207 11.37 128.33 18.09 33.47
The absorption peak of the spectra rapidly CQ<C 8/ ( - ©CQ ( (6)

decreased withincrease in duration of visible irradiation
and almost disappeared as shown infigure 20. The

chromophores responsible for characteristic colour of the . . . .
o _ decreases gradually with the increase icarbonate ion and
ANB 3BRwere broken down resulting in the degradation . - .
consequently there is a significant decrease in photo

of ANB 3BRand also the absorption peak decreases at . .
) _ i catalytic degradation.
322nm it conforms the aromatic part will be degraded.

S . AEA ET £l OAT AR T &£ #1 I
Results indicated that synthesized Z_n&md Mn, Cu, ?Ooxidation of ANB 3BRhas been studied using NaClThe
doped ZnO nano crystals showed high photo catalytic

e ; _ o results are shown inFig. 21.) T AOAAOGA 1T £ OEA A
activity sm_ce 100% degradationwas observed for lower ion Up to 2 Wi% to the reaction solution decreases the
concentrations ofANB 3BR

decolourisation at 4h. A similar observation was reported

in the organic pollutant degradation [53]. The decrease in
3.5. Effect of NaCQ and NaCl - - . o

decolourisation efficiency in the presence of chloride ion is

The other chemicals used in the dye industry play : . .
) ) ) ) 7 due to the hole scavenging properties of chloride ion.
a vital role in the dyeing process. NfCQ is added to adjust 41 0 #1 C E M )

the pH of the dye bath which is important in fixing the dye# i o #C #1 ©)

on the f.abrics. and in tr.1e fastness. of colour. SOdiumI’he reaction of dye molecule with the hole has to compete
chloride is mainly used in the dyeing process for the ., s reaction (Eq. (8)). The chloride radical anions

.transfer of dye stuff to fa.bnc [50]. Therefore, the dye formed can also block the reactive sites of the catalyst
industry wastewater _cont_ams a con&d_era?le amount Ofsurface. The inhibitory effect of chloride and phosphate
carbonate and chloride ions. Hence, its important to ion on the photo catalytic degradation has been reported

study the influence of C& and # lions in the photo [54]. The inhibiting effect of COZ ET 1T EO COAAOAO
catalytic degradation. L 4 oA oa

N ETEEAEOEI ¢ AEEAAD T £ #1 El

The effect of addition of NaCQ on the photo
catalytic oxidation of ANB 3BRis shown in Fig. 21
Increase in the NaCQ addition decreases thedegradation To find out the complete degradation ofAB 108

1CI Iti 0,
efficiency. ?}ddltlon IOf 05 L 1.5h a”f’ IIZWMJ Nazcg COD was determined for the experimental solutions after
decreases the deco our|§at|9n at 4_ - Similar c)bservatlons|rradiation. Fig. 22 indicates the % COD removal increased
have been reported earlier in the literature[51, 52]. The

) i o ) after 360 min irradiation with ZnOand Mn, Cu, Co doped
decrease indegradation efficiency of the dye is due to

_ ) _ ZnOnano crystals This confirms the mineralization of dye.
hydroxyl radical scavenging property of carbonate ion as

shown in the following equations (6&7),

HCQ C 8/ (20 RCo(. @)
Thus the primary oxidant hydroxyl radical

—)

- 3.6. COD analysis
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Figure 20. UV-VIS absorption spectrum ofANB 3BRduring visible photo catalytic decolorisation in the presence of
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Figure 21. Effect of NaeCQ & NaClon Photodecolorisation of ANB 3BRdye by undoped and dopedznO. [Dye]=10
ppm; pH=7; Mass of catalyst =5 g/L
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Figure 23. Reusability of the catalyst on the decolorisation oANB 3BRfor two runs by undoped and doped ZnO.
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3.7. Reusability property 10 indicating that the adsorption process was favourable.
Reusability study isan important parameter for The solar photo decolourization ofANB 3BRwas found to
the degradation of toxic pollutants [5556]. The stability of exhibit pseudo first order kinetics.
ZnO and Mn, Cu, Co doped ZnO narmgstals has been
studied. Degradation study was carried out for
two runs with the catalyst recovered after each run. The
entire catalytic stability test has been carried out under
identical reaction conditions. After complete degradation,
the catalyst was separatedand washed with large amount
of deionised water. The washedcatalyst was dried in
atmospheric conditions and in hot air overat 100°C for 30
min and used for second run Fig. 23show ANB 3BR
degradation results of ZnOand Mn, Cu, Co doped Zn@no
crystals respectively for two runs. ZnO nano crystals
exhibit remarkable photo stability as the degradation
percentage is around 88%even in second cycle for 90 min.
But Mn, Cu and Co doped Zn@ano crystals shows 75%,
78% and 79% ofdegradation in this second runs for 300
min. Furthermore ZnOand Mn, Cu, Co doped Zn@ano
crystals are quite easily separated in a short time. This
shows that ZnOand Mn, Cu, Co doped Znfano crystals
can be easy recovered and reused.

4 Conclusions

Mn, Cu, Co doped Zn@nd undoped ZnO nano
crystals prepared by precipitation method and calcined at
300°C effectively catalyze thedegradation of ANB 3BR
under visible light. The undoped and doped oxide has been
characterized by XRD, EDX, FESEM, TEM, FIR, U\Z
visible DRS.Doping shifts the optical absorption edge to
the visible region and reduces the intragranular resistance
as well as the recombination of photo generated electran
hole pairs. In doped ZnO thedegradation efficiency
decreases compare to undoped ZnO becausktbe particle
sizes increases and band gap decreases by adding metal
ions. The photo catalytic decolourization ofANB 3BRwas
favourable in neutral pH. The absence of dye molecules
on the catalyst surface after visible irradiation was
confirmed by FTIR supporting the reusability of the
catalyst. Adsorption isotherm data well fitted with the
Langmuir adsorption equilibrium models. The value of
separation factor R of Langmuir isotherm was well in
between 0 and 1 confirming the absorption process as
favourable. The Freundlich constant (n) fell between 1 and
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